Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Nanosci ; : 1-14, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37362151

RESUMO

The current research is focused to address the implementation of nanobubbles technology to antibacterial agents against Staphylococcus aureus infections. Nanobubbles technology is a novel, latest research employed in many medical fields including drug discovery. In this present work, supramolecular nanoliquid formulation of potential antiseptic agent chloroxylenol-based Dettol and its enhanced antibacterial activity, biocompatibility assessment was studied. Nanobubble technology was adopted to prepare nanoformulation (NB-D) using a household hand mixer under thermostatically controlled conditions. A high-stability nanoformulation with high potential antibacterial activity against human pathogenic strains of Pseudomonas aeruginosa and Staphylococcus aureus was produced by the nanobubbles created in the antiseptic solution. The overall vitality of both strains was significantly reduced in all dose tests on NB-D treatment as a result of the antibacterial activity as assessed by the well-diffusion assay, turbidometric microdilution assay, biofilm inhibition assay, and total count reduction assay. Biocompatibility of the NB-D formulation was studied by the determination of cytotoxicity against HaCaT-human keratinocytes and hemocytes. NB-D treatment did not induce any notable cytotoxic effect on HaCaT cells by showing none of the changes in cell morphology and architecture. No toxic effect on the hematocytes was observed in NB-D treatment. The enhanced antibacterial activity and best biocompatibility of NB-D result shows that the nanobubble technology could be used as an effective strategy for the formulation of antiseptics or disinfectants against high health risk infectious organisms. The novelty of the work is the formation of supramolecular nanoformulation on antiseptic agent which promised the results enhanced than the raw antiseptic agent.

2.
Sci Rep ; 13(1): 4798, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959305

RESUMO

The purpose of this study is to conduct an experimental assessment of the impact of RCCI (reactivity regulated compression ignition) on the performance, emissions, and combustion of a CRDI engine. A fuel mix (20% biodiesel, 80% diesel, and a NaOH catalyst) is generated. The produced combination is evaluated for attributes using standards established by the American Society for Testing and Materials (ASTM). The engine research included three distinct kinds of injections: 10% Pen RCCI, 20% Pen RCCI, and 30% Pen RCCI. Increasing the injection pressure increases the brake thermal efficiency, often known as BTE. NOx emissions increased as a consequence of higher injection pressures and improved combustion. However, when the injection rate is increased, the Specific Fuel Consumption (SFC) falls. The CO2 and hydrocarbon emissions, as well as the smoke opacity values, increased as the charge increased. The resultant mixture may be utilized in a CI engine with pre-mixed ignition to improve overall engine performance as well as combustion characteristics.

3.
Chemosphere ; 307(Pt 3): 135773, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944678

RESUMO

This work focuses on the synthesis and characterization of photocatalytic activity of Co-Zn/Al2O3 nanocomposite obtained by calcination of Co-loaded Zn/aluminum layered double hydroxide by wet impregnation method. The catalyst was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), BET and UV-DRS. The evaluation of catalytic activity was investigated for the degradation of emerging pharmaceutical pollutant caffeine in aqueous solutions under UV irradiation. The process parameters were optimized for the maximum removal of caffeine. A maximum caffeine removal of 92% was obtained with the optimal conditions at the catalytic dosage of 0.5 g/L, contact time of 50 min, initial concentration of 50 mg/L, and pH of 9.5. The batch experimental data coincide well with the pseudo first order kinetic model, the rate constant of 0.012 min-1, with the R2 value of 0.875-0.938. The regeneration study reveals that the catalyst has high stability and maximum removal efficiency. Hence, the synthesized nanocatalyst is considered a potential photo catalyst for removing the pharmaceutical pollutant caffeine from aqueous solutions.


Assuntos
Poluentes Ambientais , Nanocompostos , Alumínio , Cafeína , Catálise , Hidróxidos , Nanocompostos/química , Preparações Farmacêuticas , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco
4.
Environ Res ; 212(Pt C): 113386, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35569536

RESUMO

In this present study, a highly stable gum acacia -gold nanocomposite fabricated with food preservative agent natamycin (GA-AuNC-NT) was prepared via green science principles under in vitro conditions. Various characterisation techniques reveal highly stable structural, functional properties of the synthesised nanocomposite with marked antifungal activity and adsorption efficacy against congo red dye. The antifungal activity was investigated against the fungal strain Aspergillus ochraceopealiformis isolated from spoiled, expired bread. The well diffusion assay, fungal hyphae fragmentation assay and spore germination inhibition assay were used to determine the antifungal activity of the synthesised nanocomposite. Potential antifungal activity of the synthesised nanocomposite was confirmed by recording zone of inhibition, high rate of hyphae fragmentation and marked spore germination inhibition against the tested fungal strain. The molecular mechanism of antifungal activity was studied by measuring oxidative stress marker genes like catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) induction adopting quantitative real-time polymerase chain reaction (q RT-PCR). Among the various treatment, a notable reduction in all the tested marker genes expression was recorded in the nanocomposite treated fungal strain. Release profile studies using different solvents reveals sustained or controlled release of natamycin at the increasing periods. The synthesised nanocomposite's high safety or biocompatibility was evaluated with the Wistar animal model by determining notable changes in behavioural, biochemical, haematological and histopathological parameters. The synthesised nanocomposite did not exhibit any undesirable changes in all the tested parameters confirming the marked biosafety or biocompatibility. The nanocomposite was coated on the bread packaging material. The effect of packaging on the proximate composition, antioxidative enzymes status, and fungal growth of bread samples incubated under the incubation period were studied. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies reveal that the nanocomposite was effectively coated on the packaging material without changing size, shape, and functional groups. No changes in the proximate composition and antioxidative enzymes of the packaged bread samples incubated under different incubation periods reveal the nanocomposite's marked safety. The complete absence of the fungal growth also indicates the uniqueness of the nanocomposite. Further, the sorption studies revealed the utilisation of Langmuir mechanism and pseudo II order model successfully The present finding implies that the synthesised nanocomposite can be used as an effective, safe food preservative agent and adsorbent of toxic chemicals.


Assuntos
Vermelho Congo , Nanocompostos , Adsorção , Animais , Antifúngicos/farmacologia , Aspergillus , Conservantes de Alimentos , Fungos , Ouro , Goma Arábica , Nanocompostos/química , Natamicina/farmacologia
5.
Sci Total Environ ; 831: 154808, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35341870

RESUMO

Persistent organic pollutants (POPs) are organic chemicals that can persist in the environment for a longer period due to their non-biodegradability. The pervasive and bio-accumulative behavior of POPs makes them highly toxic to the environmental species including plants, animals, and humans. The present review specifies the POP along with their fate, persistence, occurrence, and risk analysis towards humans. The different biological POPs degradation methods, especially the microbial degradation using bacteria, fungi, algae, and actinomycetes, and their mechanisms were described. Moreover, the source, transport of POPs to the environmental sources, and the toxic nature of POPs were discussed in detail. Agricultural and industrial activities are distinguished as the primary source of these toxic compounds, which are delivered to air, soil, and water, affecting on the social and economic advancement of society at a worldwide scale. This review also demonstrated the microbial degradation of POPs and outlines the potential for an eco-accommodating and cost-effective approach for the biological remediation of POPs using microbes. The direction for future research in eliminating POPs from the environmental sources through various microbial processes was emphasized.


Assuntos
Poluentes Ambientais , Poluentes Orgânicos Persistentes , Animais , Monitoramento Ambiental , Poluentes Ambientais/análise , Medição de Risco , Solo , Água
6.
Environ Res ; 209: 112836, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35104483

RESUMO

Biosorption is a versatile technique of removing the oil spill - one of the major toxicants that causes water pollution, which threatens the ecological balance of the aquatic ecosystem. The proposed research aims in developing a viable adsorbent from discarded agricultural waste, Phoenix sylvestris, which was surface altered, assessed and utilised as a biosorbent for the effective removal of diesel from aqueous solution in batch adsorption trials. Waste palm leaves, Phoenix sylvestris (RPS)was physically (PMPS) and chemically modified (CMPS) to adsorb diesel in the emulsion. The synthesised materials were characterised by FTIR, SEM, and EDS, confirming a well-defined microporous structure consisting of ionisable groups. The studies indicated optimised conditions of 10 g, 4.5 g and 2 g of RPS, PMPS and CMPS respectively at 303K for an optimised adsorption time of 60 min. Freundlich isotherm agreed well with experimental data, and the kinetic mechanism claimed better results with RPS, PMPS and CMPS for Pseudo first-order model. The adsorbents could be reused five times without much loss of efficiency. From the performed studies, it can be inferred that good adsorption capacities at optimised conditions followed the order of CMPS > PMPS > RPS. Thermodynamic analysis proved the feasibility of such biosorption with exothermic nature predicting spontaneous attraction of oil components to the surface of PMPS and CMPS. Moreover, the density of the CMPS layer rendered proven results for such biosorption displaying a hyperbolic dependency assuring its efficacy. Hence, it can be concluded that the prepared adsorbent from Phoenix sylvestris, an agricultural waste, possess good adsorptive properties.


Assuntos
Ecossistema , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/análise
7.
Chemosphere ; 295: 133724, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35101432

RESUMO

The direct disposal of industrial effluents into the aquatic system is considered as a significant environmental hazard in many countries. Because of poisonous chemicals, substantial volumes of effluent release, as well as the lack of adequate of conventional treatment methodologies, industrial effluent treatment is extremely difficult. Numerous researchers have been interested in adsorption technology for its high efficiency of pollutant removal, low cost, and abundantly available adsorbent. Various adsorbent materials, both natural and modified form, have been widely used for the removal of toxic contaminants from industrial effluent. This paper highlights recent advancements in multiple modification types to functionalize the adsorbent material, resulting in higher adsorption capacity on various toxic pollutants. This review provides an overview of the adsorption mechanism and parameters (pH, adsorbent dosage, initial concentration, temperature and interaction time), which influencing the removal efficiency of adsorbents. Furthermore, this review compiles the desorption study to recover the adsorbent and improve the cycle's financial viability. This review provides a concise overview of the future directions and outlook in the framework of adsorbent application for industrial wastewater treatment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
8.
Sci Total Environ ; 825: 153897, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182637

RESUMO

Water is one of the important gifts to mankind. In recent days the accessibility of pharmaceuticals in the environment is progressively a worldwide concern. The significant wellspring of these contaminations in water assets is drugs for human use or veterinary medications. Intermediates, active metabolites and raw materials present in water from pharmaceutical industry waste because of incomplete sewage treatment systems. Various pharmaceutical components such as analgesic/antipyretics such as Ibuprofen (57.9-104 ng/L), Diclofenac (17-129 ng/L), antibiotics such as Sulfamethoxazole (28.7-124.5 ng/L), Sulfamethazine (29.2-83.9 ng/L), Azithromycin (10-68 ng/L), psychiatric drug such as Carbamazepine (9.3-92.4 ng/L), stimulants such as caffeine greater than 55 ng/L, antidepressants, antihypertensive, contraceptives etc., are present in water resources and have been detected in mg/L to µg/L range. The synergic effects and ecotoxicological hazard assessment must be developed. Studies demonstrate that these drugs might cause morphological, metabolic and sex alterations on sea-going species, and interruption of biodegradation activities. Hazard analysis and assessments are in progress. However, the conventional effluent treatment methods are not sufficient to remove API (active pharmaceutical ingredients) from this water effectively. There is necessitate for continuous monitoring of the pharmaceutical compounds in aquatic ecosystem to save the environment and living form of lives from health hazards. This work highlights the hazards, environmental assessment and the mitigation measures of pharmaceutical pollutants.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Preparações Farmacêuticas , Medição de Risco , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise , Recursos Hídricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...